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A fundamentally revised theory of wind turbine design and analysis is presented. 

With respect to conventional theory, assumptions, mistakes and misconceptions that have 
become ingrained into the historic theoretical basis of wind turbine design have been 
disproven and removed. New solutions for the momentum and energy equations are derived 
which align better with natural observation and empirical data. A thermodynamic model of 
the wind turbine wake is developed based on equations for isentropic flow. The resulting 
conclusions challenge old theory and propose new wind turbine configurations which could 
alter the direction of the industry.   
 
 

 
 

Nomenclature 
 

A = area 
a = axial induction factor, a = (V1-V2)/ V1 
ai = inflow velocity ratio, ai = V2/ V1 = (1-a)  
B = number of blades 
b = axial slipstream factor, b = (V1-V6)/ V1 
bi = outflow velocity ratio, bi = V6/V1 = (1-b) 
c = chord, local blade  
cd = drag coefficient for a section, uppercase for a surface 
cl = lift coefficient for a section, uppercase for a surface 
cp = specific heat at constant pressure 
cv = specific heat at constant volume 
e = energy per unit mass 
h = enthalpy per unit mass 
K = ratio of change in enthalpy to ke 
k = specific heat ratio vp cc  
D = drag, AqCD D  
F = force 
ke = kinetic energy per unit mass  
L = lift, AqCL L  
M = momentum 
m  = mass flow VAm   
P = power  
p = pressure 
q = dynamic pressure q=ρV2/2 
R = maximum radius or gas constant in equation of state 
r = local or relative radius of blade element 
T = thrust or temperature 
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V = velocity, with subscript defining location 
W = work or energy 
W  = power, work per unit time 
α = airfoil relative angle of attack 
θ = pitch angle of rotor blade 
λ = tip speed ratio, λ = ΩR/V1,  λR may also be used 
λr = local speed ratio, λr = Ωr/V1 
λs = slipstream speed ratio, λs = ωr/V1 

λS = slipstream outer speed ratio , λS = ωR/V1 

 = density 
σ = solidity, σ =Bc/2πr 
τ = torque 
ϕ = relative flow angle 
Ω = angular velocity of turbine  
ω = angular velocity of slipstream  
 
Subscripts 
e = exit or energy per unit mass 
i = initial or inlet 
n = normal to turbine disc. 
r = with respect to an annular element located at radius r 
θ = with respect to the direction of rotation, tangentially 
rel = relative to the airfoil 
 
 

I. Introduction 
Modern wind turbine design has challenged my intuition since I first viewed with awe a large scale modern 

wind turbine. I can sit endlessly and watch their beautiful high performance composite wings rotating in the breeze. 
Their design presents for me a personal challenge. Modern composite aircraft design has been a long time passion of 
mine. From my early days of building and flying hang gliders, sailplanes and experimental aircraft, I have come to 
realize that I am cursed with the trait that I can’t leave well enough alone and must always try to make things better. 
When I sit and watch wind turbines turn I see missed opportunity in the passing of every turbine blade. This has set 
me on a mission to better understand the roots of current theory while looking forward with an open mind to the next 
generation of wind turbines. This paper presents my interpretation and insight into modern wind turbine theory which 
I refer to as Mansberger Blade Element Theory (M-BET). 

Modern wind turbine output has been increasing with the use of faster turning, larger diameter rotors on 
higher towers, all pushing the limits of practical manufacturing, transportation and construction. At the same time the 
potential of smaller distributed energy sources beckons for new and better solutions. In almost a century, little has 
changed within the theory used to design wind turbine configurations or the algorithms used to optimize the number 
of blades or planform. This is due in part to assumptions, mistakes and misconceptions that have become ingrained 
into the historical theoretical basis of wind turbine design. 

My research leads me to the realization that before M-BET theory most modern wind turbine design and 
analysis has been based on the work of Hermann Glauert. His most referenced work, entitled “Airplane Propellers” 
was published in 1935, notably after his death and without his final proof reading. Although thorough, well written 
and including summaries of work from other classical geniuses of his day, it contains only a small portion devoted to 
wind turbines, 17 out of 191 pages. After studying all and with great respect for his work, I think his coverage of wind 
turbines was probably only in the interest of completeness in covering “airscrew theory” of all types. After all one 
must consider the times, purpose and funding of his work. This was during a buildup in technology between World 
Wars. The focus was on increasing performance of high speed aircraft and rotorcraft; wind turbine design would have 
been of little concern. By Glauert’s time in history the multi-bladed water pumping wind turbine was for the most part 
already empirically perfected and fossil fuels were readily available for power generation. Many small electrical 
generating wind turbines of propeller type blade design as well as large and small multi-bladed electrical turbines 
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were being manufactured previous to and independent of Glauert’s work. A focused interest on wind turbines as a 
source for alternative energy would not occur until the early 1970’s. In my opinion it was mere convenience that 
Glauert’s blade element momentum theory quickly became the basis from which most modern wind turbines would 
be designed and built then and through present time.  

Computational fluid dynamics (CFD) is obviously used in much present day analysis. Colorful graphic 
depictions of streak lines from blade tips look impressive but do not accurately predict the entire flow field. CFD does 
not determine the equations of fluid motion, momentum or energy and can only do the intensive work of evaluating 
extremely numerous calculations among the immediately adjoining interdependent equations of fluid elements, the 
Navier-Stokes equations. The complexity of wind turbine design still requires that sound theory first determine the 
equations that influence the broader flow field and the complex interrelationship between it and the fluid elements. 
Only then can an overall analysis and understanding of turbine design and optimal configurations be carried out. As 
well, computer-processing-time prevents examining all of the numerous design iterations that are possible. To quote 
Peter Jamieson 11 “current CFD techniques do not yet solve the Navier Stokes equations with the same objectivity as 
mother nature… It is through a mixture of techniques and convergence of insights coupled with experimental feedback 
that progress is made.” 

I assume as I write this paper that the readers are familiar with conventional wind turbine design theories and 
basic blade element analysis, if not I refer you to the excellent references2,3,4 listed at the end of this paper. My goal is 
to challenge these current theories while expanding on important principles and offering up my own design theories. 
Although it seems redundant to reproduce here many of the details of conventional theory, I will summarize some of 
them in order to clarify what I significantly disagree with and to point out the errors in the underlying assumptions 
and misconceptions.  

 

II. Fundamental Concepts 
 

Let’s begin by defining some terms and station positions for identifying the flow variables in the 
mathematical model. Caution, this numbering system varies from conventional numbering in order to more precisely 
describe the wake and regions near the turbine. Referring to Fig. 1 the airflow through the turbine is commonly 
represented as a stream tube. At this point we will make no commitment to the shape of this stream tube either upstream 
or downstream, understanding that this shape will be a result of the turbine design and conditions of operation. Station 
1 represents the initial position of influence and station 6 the final position of influence. Stations 2 and 3 represent 
positions just forward and aft of the turbine respectively. Stations 4 and 5 are reserved for later discussion. Subscripts 
0 and ∞ will be reserved for total and free stream conditions respectfully with V1 = V∞ .  

  
Figure 1 Station Positions 

 
Convention defines axial induction factor a as the ratio of induced flow velocity, the decrease in inflow 

velocity, over the free stream velocity or a = (V1-V2)/ V1. In order to simplify future equations I will define a more 
convenient term, the inflow velocity ratio as ai = V2 / V1 = (1-a). Glauert also uses a term called the axial slipstream 
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factor which for a wind turbine would be defined as b = (V1- V6)/ V1. I will similarly define outflow velocity ratio as 
bi = V6 /V1 = (1-b).  

Before going any further let’s review the fundamental difference between a propeller and a wind turbine. The 
purpose of a propeller is to convert power from an aircraft engine equal to shaft torque τ times angular velocity Ω into 
thrust T, or more accurately the power to be converted into Fn V, normal force times velocity reacting with the free 
stream. The purpose of a wind turbine is to convert power from the free stream wind into torque times angular velocity 
to be converted into electrical energy or another form of useful work. Currently most all conventional wind turbine 
designs use rotational motion to extract power from the wind. The power extracted from the wind or the aircraft engine 
is therefore equal to  
  P  (1) 

 
The torque applied to the wind turbine must be equal and opposite of the subsequent torque reacting with the slipstream. 
The rotation or angular velocity of the slipstream however can and will be different from that of the turbine blades. 
Therefore we will carefully distinguish between Ω defined as the angular velocity of the turbine or propeller from ω, 
the angular velocity of the slipstream or an annular element of the slipstream.  

The rotational kinetic energy per unit mass of air contained in an annular element of the slipstream is equal 
to  

 22

2
1 rke r    (2) 

 
where r is equal to the radial position of the element versus R, which is reserved for the maximum radius of the turbine. 
The purpose of the aircraft propeller is to produce thrust through a change in linear momentum or in other words to 
accelerate the air downstream preferably without this rotation. If the propeller also causes the slipstream to rotate then 
this is an inefficiency which wastes the aircraft power by producing the unnecessary rotation. Conventional wind 
turbine theory has mistaken this to be a similar condition of the wind turbine. However, with the rotating wind turbine 
we cannot extract power from the wind unless we do impart an equal and opposite torque and therefore rotation into 
the slipstream. The only way to eliminate this rotation would be through the use of stator vanes before or after the 
rotating turbine or with counter rotating blades. But this is currently not the case and may not be necessary as we shall 
see the rotating air mass may be to our advantage increasing the performance of the wind turbine. The common 
misconception is that for a given power extraction it is more efficient to have Ω high with τ and ω low, but since Ω 
and τ are not independent parameters this condition may not be that of maximum power extraction. Although there 
are structural advantages to low torque there are disadvantages to high tip speed rotation in the form of increased drag 
losses, centrifugal forces, noise and the probability of bird strikes. 

Let’s look at the equation for the power output of the wind turbine which is derived from Euler’s turbine 
equation which looks like 

eeeii rVmVrVrmP ,,, )(     (3) 
 

where Vθ represents the tangential velocity in the direction of rotation which at our turbine inlet is assumed to be zero. 
At the exit of an annular element Vθ will be equal to ωr. Mass flow, m  is equal to ρVA, ρ the density of the air, 
V=V2=aiV1 the velocity of the air through the turbine. For the power contained in an infinitesimal annular element, A 
is the area equal to 2πrdr at the turbine. We can now put the elemental power equation in the following form  
 

 drrVadP i
3

12    (4) 
 

It can clearly be seen from this formula that power extracted increases with an increase in slipstream rotation ω equally 
important to blade rotation Ω. Notably the most prominent variable in the equation is the radius at which the power 
extraction occurs.  

It is premature at this point to make the assumption carried over from propeller theory that for a given power 
a high rotor angular velocity Ω will be more efficient because less energy will be wasted into the slipstream in the 
form of rotational kinetic energy, ke . This assumption again is in error because ω and Ω are complicated functions 
of one another and not independent variables. More precisely ω= f(ai,Ω,V,B,r,c,cl,cd), where c is the airfoil chord, cl 
and cd are the airfoil lift and drag coefficients respectfully and B is the number of blades. To further complicate it, the 
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inflow velocity ratio is also a function of a similar set of variables ai =f(Ω,B,r,c,cl,cd). We can simplify these functions 
by defining the parameters: solidity as σ=Bc/2πr, the tip speed ratio λ=ΩR/V∞ the local speed ratio λr=Ωr/V∞, and 
defining a new term slipstream rotation speed ratio λs=ω r/V∞ . 

Convention defines the non-dimensional power coefficient Cp as the ratio of power extracted to the 
theoretical power within the kinetic energy of the air stream or 

 

 





 AVPCP

3
12

1
   (5) 

 
Alternately, we can define Cpi as the non-dimensional power coefficient for an individual annular element with the 
use of the elemental power equation Eq. (4) and dividing by the elemental area 2πrdr yields 
 

  rdrV
drrVaC i

Pi 


3
1

3
12 

   (6) 

 
Canceling terms, rearranging, and using our newly defined parameters simplifies to 
 

 sriiPi a
V

r
V

raC  22
11
















 
 . (7) 

 
I present this relationship, sriPi aC 2  as being the most fundamental relationship available for understanding the 
design and analysis of wind turbines. Keep in mind though that none of these terms are independent variables that can 
be decoupled. 

Nothing here is yet controversial, just presented from a slightly different perspective with no assumptions. 
We will come back to this fundamental equation as I develop the new theory. Bottom line is we can’t make any 
assumptions or generalizations about the power formula until we know exactly what these functions ω and ai are equal 
to. The basis for M-BET is to derive formulas for ω and ai directly from the conditions of operation and the airfoil 
aerodynamics. In order to do so we will first need to fully understand the mathematical relationships at each station 
of the turbine as they apply to the energy and momentum equations and then we can work towards solutions for bi, ai, 
ω, and the thrust and power equations. But before continuing on we need to discuss more the inherent flaws in 
conventional theory. 

 

III. Challenging Current Theory 
 
A. Glauert Corrected 

 
Glauert correctly identified the rotational energy terms within propeller design theory. If we divide Eq. (4) by 

VAm  the mass flow through the annular element, it yields the energy extracted or induced into the airflow per unit 
mass and appears in terms of the rotational parameters  

 
 (8) 
 
 
 
And we have the previously mentioned rotational kinetic energy in the slipstream 
 

 22

2
1 rke r     (9) 

 
From these Glauert deduced a change in pressure head across the propeller due to rotational terms of 
 

 
2

1

3
1

2
2 r

rdrVa
drrVae

i

i
out 








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 2222

2
1

2
1 rrrp  






   (10) 

 
This seems logical, but since this change in pressure occurs across the propeller or turbine this equation is not correct 
with respect to the way pressure changes with the energy equation to be discussed later. For a propeller the difference 
is inconsequential since   and the thrust term is really the primary importance in propeller blade element design. 
But from here, Glauert arbitrarily defines a term, a´ as the rotational interference factor also called the tangential 
induction factor. 




2
a     or    a2  (11) 

He uses this equation for the convenience of relating power and thrust formulas to induction factors simplifying the 
pressure differential of a propeller to  
 
   22 12 raap     (12) 
 
For a propeller equation Eq. (11) and Eq. (12) make sense. From Eq. (11) we see the angular velocity of the slipstream 
is proportional to the angular velocity of the propeller and in the same direction, from Eq. (12) at the same time the 
slipstream rotation is seen to detract from the pressure differential induced by the propeller. Glauert later uses this 
same term a´ in wind turbine design1. For use in the design of a wind turbine he simply states that “the thrust, torque, 
and interference factors will all be negative.”1 But this statement is not completely accurate; for a wind turbine ω is 
in the opposite direction of Ω, but for a fixed pitch blade it is also inversely proportional. If we remove some of the 
load from the turbine and allow it to accelerate in the same wind velocity, then as the rotation Ω increases the absolute 
value of ω decreases until the blade is slipping with no applied torque and ω = 0. If we add power and torque in the 
opposite direction the propeller state is induced and ω reverses direction. Furthermore if blade angles are optimal 
when Ω=0 then ω is at a maximum negative value for the wind turbine; although not extracting any power a fixed 
non-rotating turbine blade will cause the slipstream to rotate at a maximum angular velocity in the opposite direction 
of a propeller. So in fact Eq. (11) and Eq. (12) are not valid equations for use in wind turbine design.  

Conventional theory uses Glauert’s relationship  a2  to incorrectly optimize the wind turbine based on 
maximizing the power formula relative to induction factors a and a´ decoupled from Ω. This is invalid as none of 
these terms are independent variables that can be decoupled, a´ just like ω is equal to f (ai,Ω,V,B,r,c,cl,cd). In addition 

 a2 is used to incorrectly solve for the airflow triangle at the turbine blades. Although sufficient for the design 
of a propeller, Glauert’s formula for a´ does not accurately represent the wind turbine state and yet this definition has 
incorrectly become much of the basis for optimizing modern wind turbine designs. The effect of this mistake is to 
incorrectly devalue the importance of the ω term in the optimization of the wind turbine power equation. 

 
B. Misuse of 1-D Momentum and Bernoulli’s Equations 
 

Most conventional theories and versions of Blade Element Momentum method, BEM are in some manner 
based on the misuse of both simple one dimensional momentum theory and Bernoulli’s equation. For a thorough 
explanation of “1-D Momentum Theory”, I refer you to Martin Hansen’s Aerodynamics of Wind Turbines3. This book 
covers the subject in easy to understand detail, enough to unknowingly expose the gross error in its fundamental 
derivation. The underlying and questionable assumptions for 1-D Momentum Theory are an ideal wind turbine 
modeled by a semi-permeable disc being acted on by a one dimensional ideal fluid flow which is inviscid (frictionless), 
incompressible and with no wake rotation. As previously discussed, if there is no wake rotation there is no power 
being extracted from the conventional turbine. Furthermore 1-D momentum theory is usually used to evaluate internal 
pipe flow and is not necessarily relevant to free stream air flow as we shall see. But ignoring all this, the theory is still 
important in predicting the thrust and axial induction factor of the turbine if we properly correct for these poor 
assumptions.  

In its simplest form the momentum equation follows from Newton’s 2nd law that the sum of the forces acting 
on a body is equal to its change in momentum.  
 

 )()(
inout VVm

dt
mVdF    (13) 
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In this case we are dealing not with a body but a control volume of air. Hansen offers up not one but both of the 
accepted control volume diagrams which often accompany the standard derivations. These are redrawn here in Fig. 2 
and Fig. 3 using our nomenclature and station positions. 
 

 
 

Figure 2 Conventional CV I 
 
 
 

    
 

Figure 3 Conventional CV II 
 
 

The first control volume diagram Fig. 2, accounts for the flow both through the turbine and at some dimension external 
to it parallel with the freestream airflow. Therefore as the airflow is deflected around the turbine some mass flow and 
momentum must exit out the side of the control volume, which immediately contradicts the assumption of 1-D flow. 
In the first derivation, the control volume diagram is given the following equation: 

 
   TAVVmAAVAV cvsidecv  2

116
2

16
2

6     (14) 
 
Furthermore the change in momentum out the side is incorrectly assumed to be its mass flow times the velocity of the 
air stream V1. But if the airflow is exiting the control volume as it approaches the turbine at varying stream tube 
diameters then at each elemental station a portion will exit at a different velocity. In this case a different speed as well 
as angle, implying a xV  as well as yV  term or more correctly a radial term rV . 
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The conservation of mass is used to calculate the mass flow out the side as 
 

  611 VVAmside     (15) 
 
From here the thrust or drag on the turbine becomes 
 
    616122 VVmVVAVT      (16) 
 
 In the alternative control volume Fig. 3 the flow is strictly considered only within the streamlines which pass 
through the turbine. The sum of forces must be integrated along the pressure distribution of the outer streamline surface.  
This corrected control volume diagram yields: 
 
   pressureFVVmT  61   (17) 

 
This equation is correct. But conventional theory compares Eq. (16) to Eq. (17) and declares that Fpressure must equal 
zero. The correct declaration should have been that the derivation of Eq. (16) is oversimplified and incorrect. Again, 
the airflow in Eq. (16) exits the control volume at differing radial velocities as it approaches the turbine. This causes 
a change momentum which when combined with shear forces in the velocity gradient must balance with the changing 
static pressure at each elemental x station. The integration of these pressures will not be equal to zero but will equal 
some positive value resulting from a complicated nonlinear relationship acting on the control volume along the 
perimeter of the outer streamline. These calculations are currently beyond myself and this paper, although they should 
be considered significant enough to discount the validity of basic 1-D momentum theory.  

The next step in conventional theory is to reconcile the results from this momentum equation with Bernoulli’s 
Equation. A further foundation for conventional theory is the misuse of Bernoulli’s equation to relate the pressure 
drop across the turbine to the energy extracted and change in kinetic energy far down stream. Even though Bernoulli’s 
equation is invalid across any device which changes the total energy of the flow, conventional theory incorrectly 
carries this out by comparing the equations up steam and down steam of the turbine as follows 
 

 Up Stream 2
22

2
11 2

1
2
1 VpVp      (18) 

 Down Stream 2
66

2
33 2

1
2
1 VpVp      (19) 

 
But even these equations are invalid as written. We defined stations 1 and 6 as the limits of the turbines influence. The 
flow in these regions is not an internal pipe flow but is the result of the turbines influence and therefore Bernoulli’s 
Equation does not apply.  

Conventional theory carries on regardless with Bernoulli’s Equation, assuming that the airflow is a constant 
density or incompressible and at constant temperature. Therefore since mass flow must be conserved across the turbine

23 VV  . If p is defined as 23 ppp   then ppp  23 . Furthermore it is assumed the final pressure far down 
stream equals the original static pressure  pp6 . Eq. (19) then becomes 

 

 2
6

2
22 2

1
2
1 VpVpp       (20) 

 
Solving Eq. (18) and Eq. (20) for p yields 
 

 
 2

1
2

62
1 VVp  

   (21) 
 
This result, Eq. (21) is an incorrect solution in contradiction to the energy equation. Among the flaws was defining

23 ppp  . The energy extraction occurs between station 2 and 3, and pressure cannot change without a change in 
temperature which negates Bernoulli’s premise. We will come back to and elaborate on this later.  
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The thrust or drag on the turbine is then assumed to be equal to this pressure drop times the area of the turbine 
and this is equated to Eq. (16). 
 

    61222
2

6
2

12
1 VVAVAVV     (22) 

 
Solving Eq. (22) for 2V  yields  

 
 612 2

1 VVV 
   (23) 

or in terms of velocity ratios 

 
 1

2
1

 ii ba
  (24) 

 
This is a fundamental and incorrect premise of conventional theory that the velocity through the turbine is equal to the 
average of the free stream and final velocity of the affected airflow. This is derived based on ignoring slipstream 
rotation and in conjunction with misuse of the linear momentum and Bernoulli’s equations. Even Glauert admits this 
is not accurate stating, “the conclusion obtained…that the axial velocity u (V2) at the propeller disc is the arithmetic 
mean of the axial velocity V1 and the slipstream velocity u1 (V6) is not true in general when rotation also occurs in the 
slipstream.” Glauert1. So if we re-assume that slipstream rotation must be important for wind turbine performance we 
need to derive a corrected solution.  

But let’s carry on with the conventional solution for now. Solving for ib yields 
 

 12  ii ab   (25) 
 

Conventional theory in Eq. (25) implies that if the inflow velocity ratio is one half of the free stream velocity then the 
final velocity will equal zero. This by conservation of mass flow implies an expansion of the wake to an infinite 
diameter at an inflow velocity ratio of 0.5, which by applying any common sense would be a physical impossibility. 
This is an accepted limitation of the 1-D Momentum Theory that it is invalid as it approaches axial induction factors 
of 0.5. It is often said to be associated with the condition of a turbulent wake state, but I would have to disagree. 
Within this derivation there is no set up for predicting turbulent versus laminar flow around the turbine. I contend this 
solution is simply invalid overall. Nature may be able to be defined by some mathematical relationship, but a given 
mathematical relationship does not necessarily define a phenomenon of nature. Air does not flow in this manner, or 
as Einstein allegedly said, “Your calculations are correct, but your grasp of physics is abominable.”  

From here conventional theory calculates thrust and power coefficients based on the previous errors. Equation 
(23) is used to calculate V6 in terms of axial induction factor yielding 
 

 )21(16 aVV    (26) 
 

Thrust is calculated entering this value into Eq. (16) yielding 
 

 2
2

1)1(2 AVaaT     (27) 
 

By definition thrust coefficient is calculated by dividing through by dynamic pressure and area 2
2

12
1 AV  , yielding  

 

 )1(4 aaCT    (28) 
 

This relationship is graphed in Fig. 9. Notice that this result peaks at a = 0.5 and goes to zero as the axial induction 
factor goes to 1.0. This does not occur in nature and makes no sense under any circumstances including turbulent 
wakes. 
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C. Betz Debunked 
 

Power in conventional theory is calculated either by the mass flow times the deficit in kinetic energy or from 
thrust times velocity, both conveniently resulting in a common solution when it is assumed that the pressure drop is 
equal to the change in ke. Omitting the derivation and again using axial induction factor as the parameter the result is  

 

  22
3

1 12 aaAVP     (29) 

Calculating power coefficient by definition dividing through by 2
3

12
1 AV  leaves  

  214 aaCp    (30) 
 

Taking the derivative of this and setting equal to zero gives the pre-1920 result known as Betz’s limit which claims 
the maximum Cp attainable is 16/27 at an axial induction factor of 1/3. 

The next assumption that was in error here is that power calculations are a function of FnV, thrust times 
velocity at the turbine disc. This is not a propeller and even if it was there is no direct connection mechanically or 
mathematically between this term and the power extracted term, P .  FnV is the power which turbine is causing 
to be transferred from kinetic energy to internal energy. FnV is also not to be confused with the power lost to drag. 
Drag losses over the airfoil reduce both thrust and rotation. The effect of thrust from the wind turbine is to reduce the 
momentum and increase the internal energy of the airflow; it is not directly tied to the energy extraction. I will cover 
this in depth when we get to the energy equation. 

I further reiterate, as shown, these previously accepted results are based on an incorrect solution to the 
momentum equation and misuse of Bernoulli’s equation to solve an energy problem. The results are neither a law nor 
a valid limit and serve only to stifle innovation. In addition power extraction is not a result from the reduction in 
kinetic energy. If the conservation of mass flow requires that the velocity of airflow entering the turbine actuator disc 
equals the velocity exiting the turbine then the conventional theory that the wind turbine extracts power from kinetic 
energy of the wind by slowing it down makes little sense. The energy transfer occurs at the turbine with an assumed 
negligible change in velocity. Therefore in fact kinetic energy at this point is the medium through which the energy is 
transferred, but the power in a rotating wind turbine is extracted from the differential pressure across the airfoil which 
is being converted to negative thrust and torque, but only the torque results in energy extraction. The relevant energy 
equations must include the rotational terms and are invalid if temperature is ignored because the makeup of the internal 
energy of the flow is changing. To increase turbine performance we must increase mass flow while dropping both the 
temperature and pressure simultaneously. We will come back to this. Again the most relevant equation for power 
extracted from the conventional wind turbine is  , torque times angular velocity and the driving equation

sriPi aC 2 . 
 
 

IV. Developing New Theory 
 
A. Corrected Momentum Equation 
 

So what does the corrected momentum equation look like? We must first start with an accurate control 
volume diagram that works regardless of any assumptions about wake expansion. Let’s start with a control volume 
Fig. 4 that assumes the streamlines flowing around the turbine and coming back together behind it. This is what we 
know usually occurs in natural disturbances to airflow. 
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Figure 4 MBET Momentum CV. 

 
In control volume diagram Fig. 4, I make no assumptions about the velocity or mass flow representing the change in 
momentum out the sides. At this point we will just call it netxM , . Summing the forces and equating to the change in 
momentum through the control volume gives us the following 
 
  (31a) 

 
Simplifying we arrive at the corrected momentum equation of 
 
   (31b) 

 
Although we don’t have a direct analytical solution for netxM , we can arrive at an estimated solution by deductive 
analysis. Examining the limits of the equation, we know that when 61 VV   the flow through the turbine must be 
unrestricted with zero change in momentum, zero thrust and therefore 0)(, 61

VVnetxM . When 06 V  then we have 
reached a state of total restriction through the turbine so all the mass flow and momentum must be flowing out around 
the front of turbine and back in behind the turbine. So what is the limit of the thrust and )0(, 6 VnetxM  for this condition? 
For turbulent wake states we can consider the turbine drag may be similar to the drag on a flat plate or disc. This is 
usually referred to in a non-dimension form as coefficient of drag DC or wind turbine designers like to refer to it as 
coefficient of thrust TC  (In aviation thrust opposes drag, in wind energy thrust acts in the same direction as drag), 
either way  

 
2

)(
qA

DorTCC DT    where   2
12

1 Vq    (32) 

 
Depending on the Reynolds number this value can vary from 1.2 to 1.8 for a turbulent wake. But for our limit we want 
to imagine maintaining the flow as laminar around the turbine. In this case the pressure on the front face of the turbine 
would be q  and on the back side q for a total drag force of 22 Aq or 2TC . So for 06 V  and 

2
2

122 AVqAT   the momentum equation becomes 
 
 )0(,

2
162

2
1 6 

 VnetxMVAAV    (33) 

Solving for )0(, 6VnetxM  

 )( 26
2

1)0(, 6
AAVM Vnetx     (34) 

 
If 06 V , then obviously 06 A  not ∞ and this equation gives us the result we expect. 22

2
1)0(, 2

6
qAAVM Vnetx   . 

Using the continuity equation (conservation of mass flow) 6622 AVAV   we can manipulate Eq. (34) to a final form of 
 

 6
2

1666,11 )()( AAVVAVMVAVT cvnetxcv  

  netxMVVAT ,
2

6
2

16  
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Looking back at our previous limit 0)(, 61

VVnetxM , the continuity equation also implies if there is no restriction to 
airflow then 621 VVV  . Inserting this into Eq. (35) coincidentally also equals zero. This might imply that Eq. (35) is 
a general equation approximated by the linear relationship shown in Fig. 5.  
 

 
 

Figure 5 Possible Mx,net Solutions 
 

In Fig. 5 increasing negative values of 62 VV and netxM , would be produced by a propeller brake state with 
energy being added to reversing the airflow through the turbine. The limit for the wind turbine state would be

062 VV . Reversed flow caused by negative values of 6V would produce the blue negative sloping line. This 
condition could only be produced in an open throat wind tunnel with flow coming from both directions, with mass 
flow and momentum flowing out of the control volume parallel to the turbine disc and when 126 VVV   then

0, netxM . The intersection of the lines would represent the condition where 061  AA , with no flow through the 
turbine and a theoretical laminar wake. Possible quadratic or cubic solutions are additionally shown in green and red. 

What if we now look at netxM , as a function of the non-dimensional V6/V1= bi. We know that if there is no 
restriction 621 VVV   then bi = 1 and 0, netxM . We also assume that if 06 V then bi = 0 and 2, 2 AqM netx  . 
Let’s further assume another point that if 16 V  which means 1ib  implying reverse flow in the wake as above, 
then again we have 0, netxM . These points all match the points plotted in Fig. (5) for V2/V6 . 

Admittedly we do not know for sure that these are linear relationships; they could be quadratic or cubic, and 
may be differing? But we do know based on the corrected momentum equation and within the range of the wind 
turbines flow parameters the relationship exists that 
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and observing from this 
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If correct Eq. (37) has profound implications for the momentum equation and changes the way we analyze the airflow 
in the wake of a wind turbine. Rearranging terms yields 
 

 
2

1

6

1

2




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




V
V

V
V

 or  2
ii ba    (38) 

or more useful  
 ii ab    (39) 

 
Fig.6 graphs the new result ii ab   compared with the conventional 12  ii ab  in terms of  a=1-ai. 

 
Figure 6 Relationships of bi vs. axial induction, a=1-ai   

 
 

It should be obvious that )1( aab ii   is a much more realistic solution. The M-BET formula does 
not break down at axial induction factors above 0.5. Note that conventional theory claims that ii ab  ; from 
conservation of mass flow the wake therefore would be expanding as the velocity in the wake is decreasing. MBET 
claims the opposite that ii ab   and the wake therefore must be contracting as its velocity is increasing. Which is 
correct? Natural observations would agree with the later. I also refer you to not one but two independent sources of 
empirical data from Doppler radar experiments, Figure 7 and Fig. 8 from Ref. 7 and Ref. 8 respectfully. The data 
collected and presented in these papers is truly enlightening. Both sources clearly show that after the initial decrease 
in velocity through the turbine the velocity increases downwind.  Figure 7 clearly shows cross sections of the 
contracting wake with increasing velocity. Figure 8 graphically depicts the velocity deficit. From figure 8 we can 
approximate ia  equal to 1 minus the velocity deficit at the turbine or 1-0.36 = 0.64. Similarly ib = 1 minus the 
downstream final velocity deficit or 1-0.18 = 0.82. Inserting into Eq. (39) and comparing ii ab  , 80.064.0 ib , 
which is amazingly close and supports the new theory. 
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Figure 7 Doppler Radar Data; Hirth B.D. and Schroder J.L.5 

 
 

 

 
 

Figure 8 Doppler Radar Data; Kasler, Y., Rahm, S. and Simmet, R.6 

 
 

 Continuing with the new theory, we can now take our deductive solution Eq. (35) and insert back into Eq. 
(31) giving us the corrected momentum equation, 
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Dividing through be 2qA  we arrive at the non-dimensional  
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From the continuity equation 6622 AVAV   therefore
i

i

b
a

V
V

A
A


6

2

2

6 and with 2
1
ii ab   we insert all into 

Eq. (41) arriving at what I like to call the laminar wake momentum equation. 
 

  





  2

3
12 iT aC    (42) 

 
There is additional empirical support for the validity of the M-BET laminar wake momentum Eq. (42). 

Glauert and others collected and supposedly corrected early wind tunnel data to arrive at a graph originally depicted 
by Eggleston and Stoddard4 in 1987. A version of that graph appears as Fig. (9).  

 
Figure 9 Axial Induction Factor vs. CT for Empirical Data 

 
 
Figure 9 clearly shows a far superior fit of the data by the M-BET laminar wake equation then by any other historic 
alternative.  Even empirical and modern formulas such as the recent technical report by the National Renewable 
Energy Lab7 fail to properly correct the relationship between ai and bi. Most importantly the Laminar Wake Equation 
explains this and shows extreme accuracy in the regions where wind turbines most probably need to be operating in 
the mid-regions of the graph. Error in some of the data fit may be due to data reduction and interpretation, wind tunnel 
effects or a turbulent wake increasing turbine back pressure.  

Continuing with the development of the new theory we solve Eq. (42) for inflow velocity ratio  
 

   3
2

5.01 Ti Ca    (43) 
 
Equation (43) defines ia  the first fundamental parameter needed for the MBET algorithm. 
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B. The Correct Energy Equation 
 

Now let’s look at the true and correct energy equation. It is undisputed in any fluid or thermo-dynamic 
textbook that if the flow between two regions contains a mechanical device such as a propeller or a wind turbine, 
Bernoulli’s equation is not valid. There are no exceptions, this is very important. Obviously this applies between 
stations 2-3. As previously stated we also can’t analyze between stations 1-2 or 3-6 independently of 2-3 using 
Bernoulli’s equation in the currently accepted manner. Why? Because the most significant term in the energy equation 
is the internal energy related to T  the change in temperature. (Note from here on out the variable T will be used 
exclusively for temperature and for thrust we will use Fn the force normal to the turbine.) Conventional theory ignores 

T by assuming temperature before and after the turbine is the same and that the only transfer of energy is from 
pressure energy independent of temperature. But the true energy equation does not allow the pressure to change 
independent of temperature. 

There are many forms of the general energy equation for dealing with flow through a turbine. For an ideal 
gas ignoring rotation, the simplest form of the energy equation is  

 

 outpp eVTcVTc  2
33

2
22 2

1
2
1

  (44) 

 
The term cp is the specific heat of the fluid at constant temperature. The value of this term for air is often sited at 0.240 
Btu/lb°R. Be careful, this needs to be converted to ft2/s2°R for consistent units in the above equation. The conversion 
is approximately 1 Btu/lb°R = 25,037 ft2/s2°R the cp constant at 77°F works out to be equal to approximately 6008. 
This gives one an idea of the significance of the internal energy of the system versus the kinetic energy. Further notice 
that according to Eq. (44) if we extract energy from the flow then the velocity cannot remain constant across the 
turbine without a temperature drop.  

For an ideal gas ܿ௣ܶ can be considered equal to enthalpy h, which is tied to pressure and temperature in the 
following equation 

 TcphTc vp 


  (45) 

 
where cv also must be converted from its commonly used 0.171 Btu/lb°R to approximately 4,291 ft2/s2°R. Equation 
(45) into Eq. (44) yields 
 

 outeVTpVTp
 2

33
3

32
11

1

1

2
14291

2
14291


  (46) 

 
The above again demonstrates the thermal energy potential in the air flow. 

 
The enthalpy relationship between temperature and pressure can be related by the ideal gas equation of state formula

TRp  , where R in this case is the gas constant for air equal to 1716.51 ft2/s2/°R. Furthermore the relationships 
between specific heats and the gas constant are related by the following relationships:  
 

  vp ccR   and 
v

p
c

ck   ,where for air k = 1.4  (47) 

 
Using the above, the energy equation between stations 1-6 can be manipulated to look like this,  

 

 outeVpVp
 2

6
6

62
1

1

1 5.05.35.05.3


  (48) 

 
A solution to this equation would result in the correction to Eq. (21), but as can be seen the result is dependent on a 
change in density and temperature with no straight forward solution, at least not without considering the 
thermodynamics. 
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So let’s refocus right now on the basic energy equation between stations 1-6 and see what we can deduce. 
This equation similar to Eq. (44) appears as 

 

 outpp eVTcVTc  2
66

2
11 2

1
2
1   (49) 

 
and 

    2
6

2
161 2

1 VVTTce pout   (50) 

 
This is energy per unit mass, in order to solve for power out we multiply by mass flow and rearrange terms, 
 

 )](
2
1)([ 2

6
2

161222 VVTTcAVP p     (51) 

Dividing through by 2
3

112
1 AV  , with 21   and still governed by the momentum equation from  Eq. (38) ii ab 2  

will give us the dimensionless power coefficient, 
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1
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ii
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V
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
   (52) 

 
Let us now define the ratio in the change in enthalpy to kinetic energy available as K  
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    (53) 

Inserting Eq. (53) into Eq. (52) yields 
 
 2)1( ii aaKCp    (54) 
 
Equation (54) is the corrected version of Eq. (30) which Betz used to derive his supposed limit. If we take the derivative 
with respect to ai ,set equal to zero and solve  
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  (55) 
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
KKCp   (57) 

 
This solution implies the only limiting factor to our power extraction is K, our change in enthalpy relationship. If we 
make the conventional assumption that the temperature is constant then K=0 which implies 2

ii aaCp  . Taking the 
derivative of this, setting equal to zero and solving we get a maximum Cp of 0.25 at an inflow velocity ratio and or 
axial induction factor in this case of 0.5. This is far below Betz’s supposed limit and occurring at the velocity ratio 
where conventional theory breaks down. But this is considering the kinetic energy contribution only.  

I am not the first to suggest that the kinetic energy contribution could be this low. See references (10) A 
Modified Form of the Betz’ Wind Turbine Theory Including Losses A. Dyment 1989, (11) Reformulation of the 
Momentum Theory Applied to Wind Turbines by Ricardo Prado 1995 and (12) Limits of the Turbine Efficiency for 
Free Fluid Flow by Gorbon, Gorlov and Silantyev 2001. These papers independently use revised models of the flow 
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field along with more advanced mathematics to derive maximum power coefficients of closer to 0.30 and less. The 
results of these papers have apparently been ignored, probably because we know that modern 3 blade wind turbines 
can achieve power coefficients exceeding 0.45. These previous papers should have been a wakeup call to revise the 
conventional theory, but for the past 25 years we keep hitting the snooze button. 

So what does all the above imply? Let’s assume that a hypothetical wind turbine with a Cp = 0.40 is operating 
at a supposed optimum design axial induction of 1/3 (inflow velocity ratio of 2/3). We can solve for the theoretical

T  that would be required for the additional performance. Solving Eq. (52) for T  
 

  iiP
ip

aaC
ac

VT  2
2

1

2
  (58) 

 
Choosing Cp = 0.40, cp = 6011, 67.0ia and an example wind speed of say 30ft/s or roughly 20.5 mph, 
 

  FT 02.067.067.040.0
)67.0)(6011(2

30 2
2

  

 
In other words it only takes a temperature drop of 0.02°F from the enthalpy term to shift the power coefficient from 
less than 25% to 40%. If we graph Eq. (54) in the figure below, we can see that the ai ,Cp plane or the result of kinetic 
energy only, is not representative of the turbine limit but merely the turbine kinetic energy baseline curve.  

 
Figure 10 Graph of Cp Equation (54) 

 
So we must ask, by what means is this temperature drop and resulting increase in performance accomplished 

and controlled? In order to understand, we must now put rotational terms into the energy equation. As currently 
presented the energy equation is still not correct without the critical rotational terms. We return to Eq. (2) for the 
rotational kinetic energy per unit mass contained in an annular element of slipstream and to Eq. (4) for the power 
extracted from the same annular element. Dividing Eq. (4) by VAm  the mass flow through the annular element, 
yields the energy extracted per unit mass which appears in terms of the rotational parameters 
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We can now insert Eq. (2) and Eq. (59) into the basic energy equation  
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Equation (60) is the corrected energy equation which is relevant for the design of any wind turbine which extracts 
energy through rotation. Rearranging and solving for T  
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  (61) 

 
This answers the earlier question, how do we induce the temperature drop and increase the performance of the turbine. 
Equation (61) shows the temperature drop must be a function of the rotational parameters alone. As can be seen 
decreasing the velocity from station 1 to 6 will actually increase the temperature. This therefore implies the 
performance enhancement of the turbine must come from increasing the rotational term 2

33r .  
Let’s look at the term 2

33r  more carefully. This term was derived from the Euler’s Turbine equation and 
as pointed out previously the slipstream rotation appears equally important to the blade rotation. Even more important 
is the fact that the energy extracted will increase with the square of the radius of the annular element from which the 
flow passes through. Use of this important fact along with accelerated flow concepts to be discussed later are both 
central to the design of the next generation of high performance wind turbines. But before getting into new design 
concepts let’s look at this new theory closer. 
 
C. The Thermodynamic Wind Turbine Model 
 
 This theory as with most, assumes a laminar wake unaffected by viscous outer layer or turbulent mixing. We 
have corrected both the momentum equation and the energy equation. This basic wake model is drawn based on 
observations of naturally occurring flow around obstructions and in agreement with the new momentum equation. For 
the purpose of better understanding the thermodynamics of the airflow through the turbine, let’s examine a realistic 
hypothetical case study for a micro-wind turbine. We will give it the following parameters and conditions; 
 

Diameter 6 ft., R = 3 ft V∞ = 30 ft/s 
Area = 28.27 ft2  p∞ = 2116.2 lb/ft2 

Cp = 0.40   ∞ = 0.002378 slug/ft3 
a=1/3, ai=2/3  λR = 6 

  
I apologize for carrying out this paper and case study in the English system of units; I will revise it to the metric system 
as soon as time allows. 

We will not be using any form of Bernoulli’s equation; we will use only the true energy equation, the equation 
of state ݌ =  and where appropriate the thermodynamic equations for isentropic flow found in any fluid or ܴܶߩ
thermo-dynamic text, 
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  (62) 

 
As noted before, very small changes in temperature, hundredths of a degree can have significant effects on the energy 
equation. Therefore it is essential to carry as many decimals places as possible throughout the calculations and to use 
correct gas and specific heat constants that obey the relationships in Eq. (47). The following values were found to give 
reasonable results, 
 

cp = 6007.79 ft2/s2  R = (cp - cv) = 1716.51 ft2/s2 

cv = 4291.28 ft2/s2  k = cp / cv = 1.40000 
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In practice knowing the temperature and pressure, the equation of state would be used to calculate the density. To start 
the case study the equation of state formula is first used to make sure our initial temperature coincides with our 
constants. 

R
R

pT  440.518
)51.1716)(002378.0(

2.2116

1

1
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i. Free Spinning Turbine 

 
I stated earlier that the thrust or normal force on the turbine times velocity FnV was not directly associated 

with power extraction but instead results in a shift in internal energy or enthalpy. I would like to demonstrate this by 
first analyzing the sample turbine, free spinning with no energy extraction. The total energy in the flow stream is often 
referred to by the stagnation enthalpy  

 22
0 2

1
2
1 VTcpVTch vp 


  (63) 

 
If no energy is extracted this value must remain constant, either way it can be used to solve for other parameters and 
cross check values with it along the turbine stations. Station 1 is self-explanatory with the given values: 
 

T1 = 518.440°R 
p1 = 2116.20 lb/ft2 

1 = 0.002378 slug/ft3 

V1 = 30 ft/s 
h01 = 3115128.6 ft2/s2 

 
Given the axial induction factor of 1/3, or inflow velocity ratio of 2/3, the velocity at station 2 has been defined as V2 

= ai V1 = 20 ft/s. Knowing h0 must remain constant we can use Eq. (63) to solve for T2 and use Eq. (62) to solve for 
the rest of the parameters.  
 

T2 = 518.482°R 
p2 = 2116.7944 lb/ft2 

2 = 0.00237848 slug/ft3 

V2 = 20.00 ft/s 
h02 = 3115128.6 ft2/s2 

 
Next, using the laminar wake Eq. (42) we calculate the thrust coefficient. 
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The thrust coefficient can be directly correlated to the both the normal force acting on the turbine and the pressure 
drop between station 2-3 with the following 
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Therefore 

 TqCp  3,2  where 2
12

1 Vq    (65) 

For this case  
0701.1)30)(002378.0(5.0 2 q  lb/ft2 

and 
975222.0)911338.0)(0701.1(3,2  p  lb/ft2 
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We now have all the information we need to calculate the station 3 parameters. Based on the conservation of mass 
flow VAm   is constant through the turbine. We can make the assumption that V2 ≈ V3 if the change in density is 
very small and confirm it later. So in order to balance with the momentum equation we know 3,223 ppp 
=2.116.2-.97522=2115.819 lb/ft2. In this first analysis we are assuming no power is extracted therefore T2 = T3, and 
3 can be calculated from the equation of state: 
 

Free Spinning 
T3 = 518.4816°R 
p3 = 2115.8192 lb/ft2 

3 = 0.00237738 slug/ft3 

V3 = 20.00 ft/s 
h03 = 3115128.6 ft2/s2 

 
Confirming reasonableness, the mass flow, 222 AVm  = 1.34478 slug/s. If we solve for V3 = )( 23 Am  = 20.009 
ft/s, and insert it back in the total energy equation we confirm V2 ≈ V3 and T2 ≈ T3 within 0.0001 degree, insignificant 
to iterate for more accuracy. 

The procedure for solving station 6 is a simple matter of calculating V6 based on the outflow ratio derived 
from the momentum equation, V6 = biV1 = 1Vai  = 24.4949ft/s. Now plugging V6 into the total energy Eq. (63) one 
can solve for T6. Final pressure p6 is assumed to be back to atmospheric and final density is calculated from the equation 
of state.  
 

Free Spinning 
T6 = 518.4650°R 
P6 = 2116.2 lb/ft2 

6 = 0.00237789 slug/ft3 

V6 = 24.4949 ft/s 
h06 = 3115128.6 ft2/s2 

 
Notice the final temperature is 0.025°F higher. Because no energy was extracted this is the resulting shift from kinetic 
to internal energy caused by FnV, thrust times velocity, demonstrating, FnV is in no way associated with power 
extraction other than to deter mass flow. 

I use the isentropic relations to work backwards from station 6 to the previous station with the same diameter 
as A2 and velocity ≈ V2 and called this station 5. Because the velocity is the same T5 = T3 and rearranging the isentropic 
equations 
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Density is again calculated from the equation of state and all the parameters for station 5 are known. 
 

Free Spinning 
T5 = 518.4816°R 
P5 = 2116.4377 lb/ft2 

5 = 0.00237808 slug/ft3 

V5 = 20.00 ft/s 
h05 = 3115128.6 ft2/s2 

 
Note that although temperature and velocity are the same for stations 3 and 5, pressure and density are not 

and there is not an isentropic solution from stations 2 to 5 or for any of the stations in between. This region of flow 
from station 2-5 does not flow in accordance with the isentropic equations, but must still obey the energy and 
momentum equations. It was strictly energy and momentum equations that solved for station 3. The difference in 
pressure between 3 and 5 must be reconciled by nature with a change in momentum and area at station 4. This is 
similar to the reduction in area of a fluid jet as it exits a pressurized reservoir or in this case exits the influence of the 
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turbine. The pressure must increase from p3 to p5 passing through p∞ . The velocity must slow to a minimum and then 
start increasing steadily to V6 . This can conveniently occur if the area expands to a maximum at station 4 coincident 
with minimum velocity V4 and p∞ atmospheric pressure. 

 I define station 4 as the region of minimum velocity and maximum wake diameter. To solve for station 4 
refer to the two control volume diagrams in Figure 11. 

 

 
Figure 11 Non Isentropic Wake Region 

 
Assuming the angle of flow to be small on both sides of station 4, then the sum of the forces around each CV diagram 
must be approximately equal to the change in momentum which yields the following two equations 
 
 )()( 34443433 VVmApAApAp       (66) 
 )()( 45545544 VVmAApApAp       (67) 
 
Assuming p4 = p∞, and by the definition of station 5 we have A3 = A5 = A2 and as well  
V3 ≈ V5 ≈ V2 , then these equations can be simplified to 
 
 )( 24223 VVmApAp       (68) 
 )( 42252 VVmApAp     (69) 
 
Now subtracting the bottom equation from the top and solving for V4 yields 
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This equation (70) reconciles the momentum and energy equations between stations 3-5 and determines the parameters 
at station 4. Entering values 
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This continued reduction in velocity after leaving the turbine is due to both the continued influence of the turbine as 
well as the radial momentum of the mass flow. The later may not be adequately accounted for in this theory but it does 
give us agreement with the characteristic flow. Conservation of mass flow requires an increase in the wake diameter 
to a maximum at this point. This is only a temporary expansion and is observed in the Doppler radar data of Fig. 8.  

Continuing with the station 4 solutions, plugging V4 into the total energy equation one can solve for T4. Final 
pressure p4 is assumed to be passing through atmospheric p∞ and final density is calculated from the equation of state. 
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Free Spinning 
T4 = 518.4864°R 
P4 = 2116.20 lb/ft2 

4 = 0.00237779 slug/ft3 

V4 = 18.50 ft/s 
h04 = 3115128.6 ft2/s2 

 
ii. Energy Extraction 

 
That completed the solutions for the free spinning turbine. We will now solve for the case with energy being 

extracted. Solutions for stations 1 and 2 will be identical to those for the free spinning case. Now let’s look in depth 
at the nature of the energy being extracted between stations 2-3. Again I choose a realistic hypothetical Cp = 0.40 and 
λR = 6. By definition of Cp we know the average energy extracted per unit mass flow  
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We now need an equation which relates what the values of λR and λS would be for a given overall power output. We 
previously derived Eq. (6) and Eq. (7) for Cpi.with λr and λs. We will now integrate Eq.6 from 0 to the outer radius R. 
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Inserting Eq. (72) into Eq. (71)  
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We can now examine the relationship between λR and λS for these conditions 
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or in terms of radial velocity 
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and compared to 
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Note the turbine blades are spinning 60 times faster that the rotating slipstream.  
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We need the above information so we can calculate the rotational kinetic energy per unit mass flow exiting 
the turbine. This can be derived by integrating (Eq.2) from 0 to R and dividing by A2 or by considering the rotational 
kinetic energy in a solid cylinder of mass flow, either way yielding  

 

 22

4
1 Rke R     (74) 

and for our case study 
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Interesting note; comparing this to the rotational energy extracted (2.25/270) = 0.84%, or 1/120th, which implies very 
little inefficiency at this point in the rotating air mass. A much larger inefficiency occurs in Tc p  = (6007.79)(0.025) 
= 150 ft2/s2 which went into heating the air mass.  

We now have the necessary information for the station 3 energy equation with rotational parameters included,  
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Rearranging to solve for T3 

 
pc

RRVh
T

2222
302

3
4
1

2
1

2
1  

   (76) 

 
Inserting our known values with V2 ≈ V3 
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Now that we have extracted energy, 0302 hh  , but outehh  0203  

 
6.31148582706.311512803 h  ft2/s2 

 
So the temperature and stagnation enthalpy were determined from the energy equation but the pressure p3 must still 
be in balance with the momentum equation. Since we are still assuming the same axial induction factor and thrust 
coefficient then 3p  must still equal 3,22 pp   which equals 2115.819 lb/ft2. The density is determined from the 
equation of state fully defining station 3. 
 

Energy Extracted   Free Spinning  
T3 = 518.4363°R  T3 = 518.4816°R 
p3 = 2115.8192 lb/ft2  p3 = 2115.8192 lb/ft2 

3 = 0.00237759 slug/ft3 3 = 0.00237738 slug/ft3 

V3 = 20.00 ft/s  V3 = 20.00 ft/s 
h03 = 3114858.6 ft2/s2  h03 = 3115128.6 ft2/s2 

 
Note in this case we now have a temporary drop in temperature at the turbine of 0.045°F. 

The procedure for solving for T6 is as before using V6 from the momentum equation in the new total energy 
equation or 
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Inserting values into Eq. (77) yields 
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Again final pressure p6 is assumed to be back to atmospheric and final density is calculated from the equation of state.  
 

Energy Extracted   Free Spinning 
T6 = 518.4196°R  T6 = 518.4650°R 
p6 = 2116.2 lb/ft2  p6 = 2116.2 lb/ft2 

6 = 0.00237809 slug/ft3 6 = 0.00237789 slug/ft3 

V6 = 24.4949 ft/s  V6 = 24.4949 ft/s 
h06 = 3114858.6 ft2/s2  h06 = 3115128.6 ft2/s2 

 
Now with energy extracted we have our previously estimated net temperature drop of 0.02°F 

Notice that in this analysis of station 6, I do not distinguish a difference between 3 or 6,5,4 . An attempt 
could be made to analyze this difference based on either a balance in pressure with centrifugal forces or conservation 
of angular momentum and to account for the effect of the theoretical wake diameter on one or the other. But we have 
succeeded in this theory on estimating the value of 3  as being very small and assume any change downwind in 
rotational kinetic energy to be insignificant in calculating the slipstream parameters and not to have an effect on overall 
performance in this case. As rotational kinetic energy is increased in new designs this assumption may have to be 
reevaluated. 

Continuing our analysis with station 5 we again solve by working backwards with the isentropic relationships 
with V5 = V3 and T5 = T3.  
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Energy Extracted  Free Spinning 
T5 = 518.4363°R  T5 = 518.4816°R 
P5 = 2116.4386 lb/ft2  p5 = 2116.4377 lb/ft2 

5 = 0.00237829 slug/ft3 5 = 0.00237808slug/ft3 

V5 = 20.00 ft/s   V5 = 20.00 ft/s 
h05 = 3114858.6 ft2/s2   h05 = 3115128.6 ft2/s2 

 
We start the station 4 solution with Eq. (70) inserting new values 
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The difference in V4 between the free spinning versus energy extracting case is noted as insignificant. We can calculate 
T4 in the same manner as T6, p4 = p∞, and density is calculated with the equation of state. 
 

Energy Extracted  Free Spinning 
T4 = 518.4365°R   T4 = 518.4864°R 
P4 = 2116.20 lb/ft2  p4 = 2116.2 lb/ft2 

4 = 0.00237802 slug/ft3 4 = 0.00237779 slug/ft3 

V4 = 18.5 ft/s   V4 = 18.5 ft/s 
h04 = 3114858.6 ft2/s2  h04 = 3115128.6 ft2/s2 

 
This completes the analysis of the thermodynamic wind turbine model. Summarizing, it was done in two 

cases, free spinning and energy extracting to demonstrate that the thrust force alone determines the turbine wake 
profile and does not contribute to energy extracted. Also a theoretical difference in the near wake and far wake regions 
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is identified. The far wake like the forward region of influence obeys the isentropic relationships. The near wake is 
identified as a region of non-isentropic flow. The thermodynamic properties are determined from both the change in 
momentum due to the thrust and the rotational energy extracted from and imparted into the slipstream. The resulting 
parameters for the energy extracting case are graphed in the following Fig. 12. 

 
 

Figure 12 Station Parameter Graphs 
 
It should be noted that in this case a free spinning turbine is raising the air temperature by 0.025°F while the 

same turbine with a CP = 0.40 is lowering the temperature by 0.020°F. Implied by this is that turbines operating 
inefficiently are potentially raising atmospheric temperatures while a properly designed ultra-efficient wind turbine 
could lower atmospheric temperatures aiding in our fight with global warming.  

 
D. Accelerated Flow Concepts and New Configurations 

 
Accelerated flow concepts can take on different forms of shrouded turbines from diffusers to collectors and 

concentrators. These may also be referred to as constrained flow versus open rotor or free flow systems. The main 
idea in the all above is to increase mass flow through the turbine. Most are accepted in theory; few if any have proven 
to perform superior in practice and none to my knowledge have been commercially successful. For more in depth 
coverage of this subject matter see Ref. (11) and (12). 

The diffuser theories usually use conventional actuator disc concepts with assumed increases in mass flow 
to evaluate their effectiveness, see Ref. (11). These conventional theories claim that the relative increase in power 
coefficient will be proportional to the increase in mass flow ratio. The increase in mass flow is often tied to an assumed 
favorable pressure differential at the aft end of the diffuser or simple concentration from a larger diameter collector. 
Although these current systems will definitely increase the power coefficient beyond the same open rotor, it is 
debatable whether or not the Cp is any better when the diameter of the diffuser is accounted for or whether the increase 
in power is more than an equivalent increase in swept area would provide.  
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In my opinion, one of many reasons why wind turbine diffuser designs don’t measure up to expectations is 
that most make no effort to account for the airflow separation and associated intersection drag that occur naturally 
between the diffuser ring structure and the blade tips. Intersection drag is a common problem dealt with in aircraft 
design, but more difficult to deal with in the case of the wind turbine diffuser compounded by the inherent airflow 
separation and associated adverse pressure gradient which occur at what is the most critical portion of the flow field 
in the outer radii.  

In addition one needs to look at the drag effect of the concentrator and the lift generated by the diffuser. The 
effect of the diffuser on the flow surrounding the wind turbine it is to both deflect air away from the turbine as well 
as to slow down the airflow in front of the turbine in reaction to its own lift generation. This becomes another 
component of the normal force in FnV causing the change in momentum which increases the internal energy and 
decreases the kinetic energy, defeating its own purpose. These overall airflow effects alone are surely enough to negate 
any benefit from the diffusers increase in relative mass flow versus a similar increase of diameter in swept area. 
Because of this effect on the overall flow field wind tunnel tests of a diffusers cannot accurately simulate the true flow 
field and resulting effect on mass flow through a turbine unless the scale is very small or tunnel extremely large to 
eliminate influence from the tunnel walls,  

That brings us to the third problem with most diffuser, collector and concentrator designs, they attempt to 
collect air from outer annular slipstream elements and redirect the airflow inward to be reacted on by smaller turbine 
radii. As is obvious from Eq. (7) the turbine will be more effective if we move the air flow outward to be reacted on 
at the largest radius possible.  

Most evaluations of concentrator systems ignore the shift in the energy equation from the enthalpy term to 
the kinetic energy term when airflow is accelerated. When we accelerate the airflow the available kinetic energy 
increases with the square of the velocity. The power available in the kinetic energy flowing therefore increases once 
again due to drop in temperature and pressure which must occur. So in effect the available kinetic energy per unit 
mass reacting with the turbine is greater. Furthermore all the aerodynamic forces reacting with the turbine blades are 
functions of the dynamic pressure which again is proportional to the square of the velocity. Therefore no simple 
generalizations can be made for the effect of constrained flow without looking at the correct energy equation. 

So notice that I chose to debunk diffuser and concentrator designs but not accelerated flow concepts in general. 
Accelerating the airflow at the outer radii of the turbine blades while increasing the rotational parameters without 
decreasing mass flow are the keys to gaining more performance from the next generation of wind turbine. So how do 
we do this? It takes the combination of three simple devices to make successful use of the accelerated flow concepts. 
These are two large inner diameter spinner type fairings located fore and aft of the turbine disc and an outer flow 
control ring. The purpose of the large area forward spinner is to reduce the flow area and therefore accelerate the flow 
outward to the more effective radii. It was shown the energy extracted is proportional to the square of the radius of 
the annular elements from which it is extracted and that if the flow is accelerated to these outer radii by a reduction in 
area then the forces transferring energy to the turbine blades increase with square of the velocity.  An added benefit 
of the accelerated flow is that for the same rotational velocity the flow angles improve to create more torque and less 
normal force. The purpose of the flow control ring is to prevent radial flow along the turbine blades, eliminate tip 
losses, accelerate airflow into the turbine wake and deter wake expansion. Unlike a diffuser the flow control ring is 
made up of an airfoil with its lower high pressure surface to the center of the turbine. In this manner it acts as an airfoil 
end plate with positive pressure acting to stabilize the flow through the turbine while eliminating losses due to wing 
tip vortices. At the same time the forced acceleration of the flow downwind of the outer ring has the opposite effect 
of a diffuser ring or winglet. The flow control ring effect is to accelerate surrounding air into the turbine wake drafting 
more mass flow through the turbine and not away from the turbine. The aft spinner design assists in further 
encouraging the wake to contract without a loss in sectional area, while increasing rotational velocity smoothly without 
separation. This configuration minus tower is depicted in the following Fig. 13. 
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Figure 13 Proposed Thermodynamic Wind Turbine Configuration 

 
Obvious in the above figure is also the return to a multiplicity of rotor blades. Now that the erred  
Betz limitations have been removed from the equations more power can be extracted cost effectively with additional 
blades. In addition the new configuration actually will use much shorter smaller blades and therefore less structural 
material. In general most of the parts of the new design can be manufactured as light weight composite shells without 
massive spar sections. Blades may even possibly be built lighter and more economical by returning to aluminum 
skinned sections. 

The algorithms show you can’t just add more blades to a wind turbine and expect more power when installed 
on the same generator. Any improvement in wind turbine configuration can only be successful when the blade element 
parameters are designed in accordance with a corrected design algorithm and the turbine is properly matched to the 
rotational speed and torque of the electrical generator. Experimentation does demonstrate that turbines will generate 
higher efficiencies with more blades and higher solidity at lower wind velocities, see any of the research done by 
Kenneth Visser and others13. It requires a generator capable of a higher torque value to absorb the power of the 
additional blades at the higher freestream velocities. At the same time it takes a delicate balance of pitch angle and 
blade planform to prevent high axial induction factors.  

 
 

V. M-BET Algorithms 
 

I have developed two versions of M-BET, one for free flow and one for accelerated flow. The free flow 
version returns results very close to conventional algorithms for most designs, but as solidity with number of blades 
increases and rotational velocity decreases M-BET can return results that well exceed the performance of current 
designs. The program for accelerated flow stands alone in demonstrating the full potential of the next generation of 
wind turbine. For that reason I will focus this discussion on the M-BET algorithm for accelerated constrained flow. 

As with other blade element methods, M-BET discretizes the flow field into annular elements of width dr. 
The MBET design theory assumes that enough blades are present and rotating at a sufficient velocity that the normal 
force generated by the turbine blades is distributed evenly throughout the turbine disc area as a pressure distribution. 
One of the major differences between M-BET and conventional BET is that although the blade element forces are 
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calculated independently MBET does not accept that the annular elements are independent of one another. The blade 
forces must be calculated independently because of the extreme change in relative flow angle from the inner to outer 
radii. The laminar wake momentum equation was shown to determine the wake profile, but the solution assumed a 
single force at the center of the overall control volume not annular elements. These annular elements cannot influence 
themselves upstream independently but interact to influence the overall control volume. It is the sum of the annular 
element forces that determine the thrust coefficient, inflow and outflow velocity ratios. If the program returns results 
for annular thrust coefficients CTi = Fni /(qAi ) that differ extremely, then this would imply possible radial flow from 
one element to another and a questionable return for the overall results. Blade pitch or chord should be altered until 
CTi values for annular elements show reasonably close returns. Alternately velocity and mass flow values would have 
to be recalculated for each element. At this point in the development of program, radial flow would over complicate 
the solutions, and I strive for uniform pressure distribution across the turbine disc. 
 M-BET success is based on applying the principles that I have previously discussed and are implied by Eq. 
(7), the fundamental sriPi aC 2 . Notably the fact that the energy extracted will increase with the square of the 
radius of the annular element from which the flow passes through. In addition ai must be maximized. The solution to 
ai was shown in the laminar wake momentum Eq. (42) to be a function of CT = f(Fn) and therefore we want to minimize 
any normal force created by the spinner or airfoil shaped ring we create around the turbine. As well it was proposed 
that if we reduced the area with a large spinner directing flow to the outer radii and constraining it then the kinetic 
energy available to react with the turbine blades will increase with the square of the velocity.  

In order to calculate this new velocity through the turbine, M-BET requires a forward control volume plane 
at the leading edge of the inlet fairing with area equal to the total turbine area A2. The aft plane of this control volume 
is the swept area of the rotor or the overall area minus the spinner area. We will define this area as A2.5, conforming 
to the other defined station positions. The accelerated velocity interacting with the blades thorough this region will 
therefore be defined as V2.5. See Fig. 14 below. 

 
Figure 14 M-BET Turbine Airflow 

 
We define rs as the radius of the spinner. From conservation of mass flow, V2A2 = V2.5A2.5. Therefore  
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or in terms of ai and the ratio of spinner to turbine radii 
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The relative airflow triangle for M-BET considering constrained flow is simpler than free flow and 

conventional theory. I do not believe it necessary to calculate the downwash angle of flow due lift and rotation in this 
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case. Most wind tunnel data for airfoils is based on the geometric angle of attack for an airfoil section joined to the 
side walls of the tunnel in similarly constrained flow. I assume in the program, with our flow accelerated into the 
constrained ring the change in angle of attack due to induced flow downstream of the turbine will have negligible 
effect. I also assume tip losses to be negligible due to the end plate effect of the ring. For the free flow program one 
does need to make allowances for both aspect ratio and tip losses. With that said we can estimate the constrained flow 
angles and velocities with the following figure 15. 

 
 

 
 

Figure 15 M-BET Airflow Triangle 
 
The M-BET algorithm steps are as follows: 
 
Step1.) Initialize an assumed value for inflow velocity ratio ai. We derived an optimum from the energy Eq. (56) of

2/5.0, Ka optimumi  . So a good starting point is ai = 0.5 or higher and work the program from there.  
 
Step2.) Calculate V2.5 from Eq. (79) for the given choice of spinner radius.  
 
Step 3.) For each annular element of area A2.5, layout number of blades, planform chord c, set desired pitch angle θ 
and Ω. Compute inflow angle ϕ, local angle of attack α and the relative velocity Vrel from Fig. 15. 
 
Step 4.) Determine local cl and cd from known airfoil data or airfoil design software. 
 
Step 5.) Calculate the normal and tangential forces on each blade element using standard methods of blade element 
theory such as presented by Hansen.2 

 
Step 6.) Sum all the elemental normal forces, Fn = thrust and calculate CT = Fn /(qA2). From this calculate the corrected 
value for ai from Eq. (43),   3

2
5.01 Ti Ca  . Iterate the solution process until the value of ai is in reasonable 

agreement. 
 
Step 7.) Calculate CTi = Fni /(qAi ) for each annular element and confirm the values are reasonably close. If not adjust 
chord or pitch angle to maintain reasonably uniform pressure differential. Repeat step 6 and 7 until ai is in reasonable 
agreement and CTi represents reasonably uniform flow. 
 
Step 8.) Compute loads on all blades from final elemental normal and tangential forces. Calculate power, thrust, and 
blade loading again using standard methods. 
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VI. Conclusion 
 

This paper has laid out a fundamentally revised theory of wind turbine design and analysis using accepted 
thermodynamic principles in addition to conventional blade element aerodynamic analysis. With respect to 
conventional theory, previously mistaken limitations have been disproven and removed. The Laminar Wake 
Momentum Equation is derived with the fundamental new result that   3

22 5.01 Tii Cba  . The conventional 
energy equation for a wind turbine is corrected to include thermodynamic terms as it should. A mathematical model 
for this new thermodynamic wind turbine is presented and the method of extracting thermal energy from the wind 
turbine is explained.  A cost effective ultra-efficient multi-blade turbine which is under development is shown. The 
new concept uses a large area spinner or fairing to accelerate airflow to the outer radii of the turbine blades. Blade tip 
losses are eliminated and flow constrained with the use of an outer flow control ring which also is used to accelerate 
flow in the near wake. An aft spinner encourages smooth wake rotation without separation while the combination 
discourages wake expansion. These concepts are currently undergoing dynamometer testing for theory validation at 
Mansberger Aircraft Inc. We hope these new turbines will not only be capable of producing power at efficiencies 
previously thought impossible but will have the added benefit of reducing atmospheric temperatures and aiding in our 
ability to deal with global warming.  
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